p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.395C24, C24.305C23, C22.1472- 1+4, C22.1952+ 1+4, C42⋊5C4⋊11C2, C42⋊8C4⋊28C2, C23.43(C4○D4), (C2×C42).44C22, (C22×C4).75C23, C4.27(C42⋊2C2), (C23×C4).379C22, C23.11D4.8C2, C23.7Q8.46C2, C23.65C23⋊71C2, C23.83C23⋊22C2, C24.C22.21C2, C2.C42.147C22, C2.51(C23.36C23), C2.14(C22.49C24), C2.39(C22.46C24), C2.34(C22.47C24), C2.31(C22.36C24), (C4×C4⋊C4)⋊72C2, (C4×C22⋊C4).48C2, (C2×C4).734(C4○D4), (C2×C4⋊C4).857C22, C2.14(C2×C42⋊2C2), C22.272(C2×C4○D4), (C2×C22⋊C4).159C22, SmallGroup(128,1227)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.395C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=abc, e2=b, g2=a, ab=ba, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 372 in 206 conjugacy classes, 96 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, C2.C42, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C4×C22⋊C4, C4×C4⋊C4, C23.7Q8, C42⋊8C4, C42⋊5C4, C24.C22, C23.65C23, C23.11D4, C23.83C23, C23.395C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C42⋊2C2, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C42⋊2C2, C23.36C23, C22.36C24, C22.46C24, C22.47C24, C22.49C24, C23.395C24
(1 55)(2 56)(3 53)(4 54)(5 37)(6 38)(7 39)(8 40)(9 43)(10 44)(11 41)(12 42)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 26)(22 27)(23 28)(24 25)(29 58)(30 59)(31 60)(32 57)(33 64)(34 61)(35 62)(36 63)
(1 12)(2 9)(3 10)(4 11)(5 28)(6 25)(7 26)(8 27)(13 31)(14 32)(15 29)(16 30)(17 35)(18 36)(19 33)(20 34)(21 39)(22 40)(23 37)(24 38)(41 54)(42 55)(43 56)(44 53)(45 60)(46 57)(47 58)(48 59)(49 62)(50 63)(51 64)(52 61)
(1 44)(2 41)(3 42)(4 43)(5 21)(6 22)(7 23)(8 24)(9 54)(10 55)(11 56)(12 53)(13 58)(14 59)(15 60)(16 57)(17 64)(18 61)(19 62)(20 63)(25 40)(26 37)(27 38)(28 39)(29 45)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 12 36)(2 51 9 64)(3 20 10 34)(4 49 11 62)(5 58 28 47)(6 30 25 16)(7 60 26 45)(8 32 27 14)(13 39 31 21)(15 37 29 23)(17 41 35 54)(19 43 33 56)(22 46 40 57)(24 48 38 59)(42 63 55 50)(44 61 53 52)
(2 9)(4 11)(5 21)(6 40)(7 23)(8 38)(14 32)(16 30)(17 51)(18 61)(19 49)(20 63)(22 25)(24 27)(26 37)(28 39)(33 62)(34 50)(35 64)(36 52)(41 54)(43 56)(46 57)(48 59)
(1 60 55 31)(2 32 56 57)(3 58 53 29)(4 30 54 59)(5 61 37 34)(6 35 38 62)(7 63 39 36)(8 33 40 64)(9 14 43 46)(10 47 44 15)(11 16 41 48)(12 45 42 13)(17 24 49 25)(18 26 50 21)(19 22 51 27)(20 28 52 23)
G:=sub<Sym(64)| (1,55)(2,56)(3,53)(4,54)(5,37)(6,38)(7,39)(8,40)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,26)(22,27)(23,28)(24,25)(29,58)(30,59)(31,60)(32,57)(33,64)(34,61)(35,62)(36,63), (1,12)(2,9)(3,10)(4,11)(5,28)(6,25)(7,26)(8,27)(13,31)(14,32)(15,29)(16,30)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(41,54)(42,55)(43,56)(44,53)(45,60)(46,57)(47,58)(48,59)(49,62)(50,63)(51,64)(52,61), (1,44)(2,41)(3,42)(4,43)(5,21)(6,22)(7,23)(8,24)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,64)(18,61)(19,62)(20,63)(25,40)(26,37)(27,38)(28,39)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,12,36)(2,51,9,64)(3,20,10,34)(4,49,11,62)(5,58,28,47)(6,30,25,16)(7,60,26,45)(8,32,27,14)(13,39,31,21)(15,37,29,23)(17,41,35,54)(19,43,33,56)(22,46,40,57)(24,48,38,59)(42,63,55,50)(44,61,53,52), (2,9)(4,11)(5,21)(6,40)(7,23)(8,38)(14,32)(16,30)(17,51)(18,61)(19,49)(20,63)(22,25)(24,27)(26,37)(28,39)(33,62)(34,50)(35,64)(36,52)(41,54)(43,56)(46,57)(48,59), (1,60,55,31)(2,32,56,57)(3,58,53,29)(4,30,54,59)(5,61,37,34)(6,35,38,62)(7,63,39,36)(8,33,40,64)(9,14,43,46)(10,47,44,15)(11,16,41,48)(12,45,42,13)(17,24,49,25)(18,26,50,21)(19,22,51,27)(20,28,52,23)>;
G:=Group( (1,55)(2,56)(3,53)(4,54)(5,37)(6,38)(7,39)(8,40)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,26)(22,27)(23,28)(24,25)(29,58)(30,59)(31,60)(32,57)(33,64)(34,61)(35,62)(36,63), (1,12)(2,9)(3,10)(4,11)(5,28)(6,25)(7,26)(8,27)(13,31)(14,32)(15,29)(16,30)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(41,54)(42,55)(43,56)(44,53)(45,60)(46,57)(47,58)(48,59)(49,62)(50,63)(51,64)(52,61), (1,44)(2,41)(3,42)(4,43)(5,21)(6,22)(7,23)(8,24)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,64)(18,61)(19,62)(20,63)(25,40)(26,37)(27,38)(28,39)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,12,36)(2,51,9,64)(3,20,10,34)(4,49,11,62)(5,58,28,47)(6,30,25,16)(7,60,26,45)(8,32,27,14)(13,39,31,21)(15,37,29,23)(17,41,35,54)(19,43,33,56)(22,46,40,57)(24,48,38,59)(42,63,55,50)(44,61,53,52), (2,9)(4,11)(5,21)(6,40)(7,23)(8,38)(14,32)(16,30)(17,51)(18,61)(19,49)(20,63)(22,25)(24,27)(26,37)(28,39)(33,62)(34,50)(35,64)(36,52)(41,54)(43,56)(46,57)(48,59), (1,60,55,31)(2,32,56,57)(3,58,53,29)(4,30,54,59)(5,61,37,34)(6,35,38,62)(7,63,39,36)(8,33,40,64)(9,14,43,46)(10,47,44,15)(11,16,41,48)(12,45,42,13)(17,24,49,25)(18,26,50,21)(19,22,51,27)(20,28,52,23) );
G=PermutationGroup([[(1,55),(2,56),(3,53),(4,54),(5,37),(6,38),(7,39),(8,40),(9,43),(10,44),(11,41),(12,42),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,26),(22,27),(23,28),(24,25),(29,58),(30,59),(31,60),(32,57),(33,64),(34,61),(35,62),(36,63)], [(1,12),(2,9),(3,10),(4,11),(5,28),(6,25),(7,26),(8,27),(13,31),(14,32),(15,29),(16,30),(17,35),(18,36),(19,33),(20,34),(21,39),(22,40),(23,37),(24,38),(41,54),(42,55),(43,56),(44,53),(45,60),(46,57),(47,58),(48,59),(49,62),(50,63),(51,64),(52,61)], [(1,44),(2,41),(3,42),(4,43),(5,21),(6,22),(7,23),(8,24),(9,54),(10,55),(11,56),(12,53),(13,58),(14,59),(15,60),(16,57),(17,64),(18,61),(19,62),(20,63),(25,40),(26,37),(27,38),(28,39),(29,45),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,12,36),(2,51,9,64),(3,20,10,34),(4,49,11,62),(5,58,28,47),(6,30,25,16),(7,60,26,45),(8,32,27,14),(13,39,31,21),(15,37,29,23),(17,41,35,54),(19,43,33,56),(22,46,40,57),(24,48,38,59),(42,63,55,50),(44,61,53,52)], [(2,9),(4,11),(5,21),(6,40),(7,23),(8,38),(14,32),(16,30),(17,51),(18,61),(19,49),(20,63),(22,25),(24,27),(26,37),(28,39),(33,62),(34,50),(35,64),(36,52),(41,54),(43,56),(46,57),(48,59)], [(1,60,55,31),(2,32,56,57),(3,58,53,29),(4,30,54,59),(5,61,37,34),(6,35,38,62),(7,63,39,36),(8,33,40,64),(9,14,43,46),(10,47,44,15),(11,16,41,48),(12,45,42,13),(17,24,49,25),(18,26,50,21),(19,22,51,27),(20,28,52,23)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4H | 4I | ··· | 4X | 4Y | 4Z | 4AA | 4AB |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.395C24 | C4×C22⋊C4 | C4×C4⋊C4 | C23.7Q8 | C42⋊8C4 | C42⋊5C4 | C24.C22 | C23.65C23 | C23.11D4 | C23.83C23 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 16 | 4 | 1 | 1 |
Matrix representation of C23.395C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 3 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,4,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C23.395C24 in GAP, Magma, Sage, TeX
C_2^3._{395}C_2^4
% in TeX
G:=Group("C2^3.395C2^4");
// GroupNames label
G:=SmallGroup(128,1227);
// by ID
G=gap.SmallGroup(128,1227);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,232,758,723,675,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=a*b*c,e^2=b,g^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations